Persamaan Garis Lurus
LK-4.2
Mapel : Matematika
Materi : Cara Mencari Kemiringan (Gradien) Pada Garis Lurus
Kelas : VIII
Hari/Tanggal : Kamis , 4 November 2021
Assalamualikum wr wb...
Selamat pagi semuanya, sekarang bertemu lagi dengan pelajaran matematika, sebelum kita mulai, marilah kita bersama-sama berdoa agar diberikan kelancaran dan kemudahan untuk memahami materi yang akan kita pelajari ini.
Pada materi sebelumnya kita sudah belajar tentang Pengertian, Bentuk dan Menggambar Persamaan Garis Lurus, Pada pertemuan hari ini kita akan belajar tentang Cara Mencari Kemiringan (Gradien) Pada Garis Lurus, untuk lebeih memahaminya pelajari materi berikut ini.
"Gradien adalah nilai yang menunjukkan kemiringan/kecondongan suatu garis lurus”.Umumnya, gradien disimbolkan dengan huruf “m”. Gradien akan menentukan seberapa miring suatu garis pada koordinat kartesius. Gradien suatu garis dapat miring ke kanan, miring ke kiri, curam, ataupun landai, tergantung dari nilai komponen X dan komponen Y nya. Contoh macam-macam kemiringan (gradien) pada garis lurus dapat kamu lihat melalui gambar di bawah ini:
“Garis yang gradiennya positif akan miring ke kanan, sedangkan garis yang gradiennya negatif akan miring ke kiri”.
Gambar nomor 1, garisnya miring ke kanan,maka radiennya bernilai positif.
Gambar nomor 2, garisnya miring ke kanan,maka radiennya bernilai positif.
Gambar nomor 3, garisnya miring ke kanan,maka radiennya bernilai positif.
Gambar nomor 4, garisnya miring ke kiri, maka gradiennya bernilai negatif.
Cara Nenentukan Gradien Suatu Garis
a. Persamaan garis y = mx + c
Pada persamaan garis ini, gradien dapat dicari dengan mudah, karena gradiennya adalah koefisien dari variabel x itu sendiri, yaitu m.
Contoh:
1. Tentukan gradien dari persamaan y=2x+5.
koefisian x adalah 2, Jadi untuk persamaan y=2x+5 gradiennya adalah 2
3. Garis y = -2x + 8, koefisien x adalah -2. Jadi, gradien garis tersebut adalah -2.
b. Persamaan garis ax + by + c = 0
Jika diketahui persamaan garis ax + by + c = 0, maka langkah pertama yang harus kamu lakukan adalah ubah persamaan garis tersebut ke bentuk y = mx + c, dengan m adalah gradien garis tersebut. Di sini, kamu harus perhatikan tanda +/- dari koefisien masing-masing variabelnya. Karena, tanda +/- akan berubah ketika kita pindah ruas persamaannya. Coba perhatikan contoh soal di bawah ini,
Contoh:
1. Hitunglah kemiringan (gradien) pada persamaan garis 5x + 2y - 8 = 0 !
Jawab:
Pertama-tama, kita ubah dulu persamaan 5x + 2y - 8 = 0 ke bentuk y = mx + c, sehingga persamaannya menjadi,
5x + 2y - 8 = 0
2y = -5x + 8
Koefisien x bernilai positif, yaitu 5, sehingga setelah kita pindah ruas ke kanan akan bernilai negatif. Begitu juga dengan konstanta -8 yang berubah tanda menjadi 8 karena pindah ruas ke kanan. Selanjutnya, kita bagi kedua ruas dengan 2.
Jadi, gradien dari persamaan garis tersebut adalah -5/2.
2. Tentukan gradien garis dengan persamaan 4x–2y+8=0 !
Jawab:
4x – 2y + 8 = 0
– 2y = – 4x – 8 4x Pindah ruas ke kanan jadi -4x dan 8 pidah -8
Koefisien x adalah 2 maka gradien garis dengan persamaan 4x–2y+8=0 adalah 2.
3. Tentukan gradien garis dengan persamaan 3x+2y=6 !
Jawab:
c. Diketahui dua titik yang dilalui garis
Jika diketahui dua titik yang dilalui suatu garis lurus, misalnya (x1,y1) dan (x2,y2), maka gradiennya dapat diperoleh dengan rumus
Contoh:
Perhatikan gambar berikut:
1.
Gradien garis k adalah...
Diketahui dua buah titik yang dilalui oleh garis k, yaitu (4,0) dan (0,6) maka,
x1=4, x2=0, y1=0 dan y2=6
Nilai-nilai tersebut masukan kedalam rumus:
Jadi, gradien garis tersebut adalah -3/2
2. Tentukan Gradien garis lurus yang melalui titik (2 ,-6) dan (-2,2)
Jawab: Diketahui x1=2, x2=-2, y1=-6 dan y2=2
Nilai-nilai tersebut dimasukan kedala rumus
Jadi gradien garis lurus yang melewati titik (2,-6)dan (-2,2) adalah -2
3. Tentukan gradien yang melalui titik (5,8)dan (8,17)
Jawab:
Diketahui : x1=5,x2=8,y1=8 dan y2=17
Tugas 4.2
1. Tentukan gradien dari persamaan berikut
a. y= 3x + 1
b. 2y = -2x + 6
c. y – 4x = 5
d. 4x-2y-8=0
e. x +2y = 12
2. Tentukan gradien garis yang melawati titik berikut
a. (-4,14) dan (8,-10)
b. (7,-9)dan (-11,-9)
c. Berapakah gradien garis lurus berikut
Petunjuk Pengisian
1. Kerjakan dalam buku tugas Matematika (Jangan Dicampur dengan Buku Mapel Lain)
2. Cantumkan Tanggal Pengerjaan
3. Cantumkan Nama lengkap dan Kelas
4. Kerjakan sesuai dengan instruksi soal.
5. Tugas akan diperiksa ketika petemuan dikelas
No comments:
Post a Comment